
DDA Line generation Algorithm

In any 2-Dimensional plane if we connect two points (x0, y0) and (x1, y1), we
get a line segment. But in the case of computer graphics, we can not directly
join any two coordinate points, for that we should calculate intermediate points’
coordinates and put a pixel for each intermediate point, of the desired color with
help of functions like putpixel(x, y, K) in C, where (x,y) is our co-ordinate and K
denotes some color.

Examples:

Input: For line segment between (2, 2) and (6, 6) :

we need (3, 3) (4, 4) and (5, 5) as our intermediate

points.

Input: For line segment between (0, 2) and (0, 6) :

we need (0, 3) (0, 4) and (0, 5) as our intermediate

points.

For using graphics functions, our system output screen is treated as a
coordinate system where the coordinate of the top-left corner is (0, 0) and as
we move down our y-ordinate increases and as we move right our x-ordinate
increases for any point (x, y).
Now, for generating any line segment we need intermediate points and for
calculating them we can use a basic algorithm called DDA(Digital differential
analyzer) line generating algorithm.

DDA Algorithm :

Consider one point of the line as (X0,Y0) and the second point of the line as
(X1,Y1).

// calculate dx , dy

dx = X1 - X0;

dy = Y1 - Y0;

http://www.programmingsimplified.com/c/graphics.h/putpixel

// Depending upon absolute value of dx & dy

// choose number of steps to put pixel as

// steps = abs(dx) > abs(dy) ? abs(dx) : abs(dy)

steps = abs(dx) > abs(dy) ? abs(dx) : abs(dy);

// calculate increment in x & y for each steps

Xinc = dx / (float) steps;

Yinc = dy / (float) steps;

// Put pixel for each step

X = X0;

Y = Y0;

for (int i = 0; i <= steps; i++)

{

 putpixel (round(X),round(Y),WHITE);

 X += Xinc;

 Y += Yinc;

}

// C program for DDA line generation

#include<stdio.h>

#include<graphics.h>

#include<math.h>

//Function for finding absolute value

int abs (int n)

{

 return ((n>0) ? n : (n * (-1)));

}

//DDA Function for line generation

void DDA(int X0, int Y0, int X1, int Y1)

{

 // calculate dx & dy

 int dx = X1 - X0;

 int dy = Y1 - Y0;

 // calculate steps required for generating pixels

 int steps = abs(dx) > abs(dy) ? abs(dx) : abs(dy);

 // calculate increment in x & y for each steps

 float Xinc = dx / (float) steps;

 float Yinc = dy / (float) steps;

 // Put pixel for each step

 float X = X0;

 float Y = Y0;

 for (int i = 0; i <= steps; i++)

 {

 putpixel (round(X),round(Y),RED); // put pixel at(X,Y)

 X += Xinc; // increment in x at each step

 Y += Yinc; // increment in y at each step

 delay(100); // for visualization of line-

 // generation step by step

 }

}

// Driver program

int main()

{

 int gd = DETECT, gm;

 // Initialize graphics function

 initgraph (&gd, &gm, "");

 int X0 = 2, Y0 = 2, X1 = 14, Y1 = 16;

 DDA(2, 2, 14, 16);

 return 0;

}

Advantages :

• It is simple and easy to implement algorithm.
• It avoid using multiple operations which have high time complexities.
• It is faster than the direct use of the line equation because it does not use

any floating point multiplication and it calculates points on the line.

Disadvantages :

• It deals with the rounding off operation and floating point arithmetic so it has

high time complexity.
• As it is orientation dependent, so it has poor endpoint accuracy.
• Due to the limited precision in the floating point representation it produces

cumulative error.

